Macrotrends

Important

In each result dataframe, only the first 5 rows of the DataFrame are shown at most to keep the documentation concise. The actual DataFrame returned by each function may contain more rows.

Income Statement

Retrieves detailed income statement data including revenue, expenses, and profit metrics. Pass frequency as “annual” or “quarterly”. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="AAPL")
result = ticker.macrotrends_income_statement(frequency="annual")

Results:

field_name

2024-09-30

2023-09-30

2022-09-30

2021-09-30

2020-09-30

2019-09-30

2018-09-30

2017-09-30

2016-09-30

2015-09-30

2014-09-30

2013-09-30

2012-09-30

2011-09-30

2010-09-30

2009-09-30

Revenue

391035

383285

394328

365817

274515

260174

265595

229234

215639

233715

182795

170910

156508

108249

65225

42905

Cost Of Goods Sold

210352

214137

223546

212981

169559

161782

163756

141048

131376

140089

112258

106606

87846

64431

39541

25683

Gross Profit

180683

169148

170782

152836

104956

98392

101839

88186

84263

93626

70537

64304

68662

43818

25684

17222

Research And Development Expenses

31370

29915

26251

21914

18752

16217

14236

11581

10045

8067

6041

4475

3381

2429

1782

1333

SG&A Expenses

26097

24932

25094

21973

19916

18245

16705

15261

14194

14329

11993

10830

10040

7599

5517

4149

Balance Sheet

Retrieves balance sheet data showing assets, liabilities, and equity. Pass frequency as “annual” or “quarterly”. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="CAT")
result = ticker.macrotrends_balance_sheet(frequency="annual")

Results:

field_name

2024-12-31

2023-12-31

2022-12-31

2021-12-31

2020-12-31

2019-12-31

2018-12-31

2017-12-31

2016-12-31

2015-12-31

2014-12-31

2013-12-31

2012-12-31

2011-12-31

2010-12-31

2009-12-31

Cash On Hand

6889.00000

6978.00000

7004.00000

9254.00000

9352.00000

8284.00000

7857.00000

8261.00000

7168.00000

6460.00000

7341.00000

6081.00000

5490.00000

3057.00000

3592.00000

4867.00000

Receivables

18847.00000

18820.00000

17869.00000

17375.00000

16780.00000

17904.00000

17452.00000

16193.00000

14503.00000

15686.00000

16764.00000

17176.00000

18566.00000

17725.00000

16792.00000

13912.00000

Inventory

16827.00000

16565.00000

16270.00000

14038.00000

11402.00000

11266.00000

11529.00000

10018.00000

8614.00000

9700.00000

12205.00000

12625.00000

15547.00000

14544.00000

9587.00000

6360.00000

Pre-Paid Expenses

3119.00000

4586.00000

2642.00000

2788.00000

1930.00000

1739.00000

1765.00000

1772.00000

1682.00000

1662.00000

818.00000

900.00000

988.00000

994.00000

908.00000

862.00000

Other Current Assets

Cash Flow

Retrieves cash flow statement data showing operating, investing, and financing cash flows. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="TSLA")
result = ticker.macrotrends_cash_flow(frequency="annual")

Results:

field_name

2024-12-31

2023-12-31

2022-12-31

2021-12-31

2020-12-31

2019-12-31

2018-12-31

2017-12-31

2016-12-31

2015-12-31

2014-12-31

2013-12-31

2012-12-31

2011-12-31

2010-12-31

2009-12-31

Net Income/Loss

7153

14974

12587

5644

862

-775

-1063

-2241

-773.046

-888.663

-294.04

-74.014

-396.213

-254.411

-154.328

-55.74

Total Depreciation And Amortization - Cash Flow

5368

4667

3747

2911

2322

2154

2060

1727

1041.79

500.644

301.665

120.784

28.825

16.919

10.623

6.94

Other Non-Cash Items

2321

-4137

2102

2275

2575

1375

1043

950

301.289

356.809

191.863

69.076

58.631

34.23

27.063

5.518

Total Non-Cash Items

7689

530

5849

5186

4897

3529

3103

2677

1343.08

857.453

493.528

189.86

87.456

51.149

37.686

12.458

Change In Accounts Receivable

-1083

-586

-1124

-130

-652

-367

-497

-25

-216.565

46.267

-183.658

-21.705

-17.303

-2.829

-3.222

-0.168

Key Financial Ratios

Retrieves key financial ratios including liquidity, leverage, and profitability metrics over multiple periods. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="TSLA")
result = ticker.macrotrends_key_financial_ratios

Results:

field_name

2024-12-31

2023-12-31

2022-12-31

2021-12-31

2020-12-31

2019-12-31

2018-12-31

2017-12-31

2016-12-31

2015-12-31

2014-12-31

2013-12-31

2012-12-31

2011-12-31

2010-12-31

2009-12-31

Current Ratio

2.0249

1.7259

1.532

1.3753

1.8751

1.1346

0.8313

0.8561

1.0743

0.9897

1.5092

1.875

0.9734

1.9486

2.7568

1.7492

Long-term Debt / Capital

0.0725

0.0431

0.0339

0.1446

0.294

0.6091

0.6203

0.6428

0.5149

0.6562

0.6731

0.4731

0.7674

0.5476

0.2589

-0.0032

Debt/Equity Ratio

0.1116

0.0825

0.0681

0.2203

0.5087

1.7971

2.0796

1.9705

1.2693

2.488

2.729

0.9097

3.7423

1.2504

0.3507

-0.0043

Gross Margin

17.8626

18.2489

25.5984

25.2792

21.0236

16.5555

18.8342

18.9047

22.8461

22.825

27.5664

22.6602

7.2756

30.1579

26.3234

8.5177

Operating Margin

7.2433

9.1875

16.7636

12.1194

6.3229

-0.2807

-1.8079

-13.8787

-9.5333

-17.7119

-5.837

-3.0436

-95.4089

-123.132

-125.778

-46.3602

Operating Margin

Retrieves operating margin data showing the percentage of revenue remaining after operating expenses. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="TSLA")
result = ticker.macrotrends_operating_margin

Results:

Date

TTM Revenue

TTM Operating Income

Operating Margin

0

1

2025-06-30

$92.72B

$5.62B

6.06%

2

2025-03-31

$95.72B

$6.30B

6.59%

3

2024-12-31

$97.69B

$7.08B

7.24%

4

2024-09-30

$97.15B

$7.56B

7.78%

Gross Margin

Retrieves gross margin data showing the percentage of revenue remaining after cost of goods sold. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="MSFT")
result = ticker.macrotrends_gross_margin

Results:

Date

TTM Revenue

TTM Gross Profit

Gross Margin

1

2025-06-30

$281.72B

$193.89B

68.82%

2

2025-03-31

$270.01B

$186.51B

69.07%

3

2024-12-31

$261.80B

$181.72B

69.41%

4

2024-09-30

$254.19B

$176.28B

69.35%

EBITDA Margin

Retrieves EBITDA margin data showing earnings before interest, taxes, depreciation, and amortization as a percentage of revenue. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="UNH")
result = ticker.macrotrends_ebitda_margin

Results:

Date

TTM Revenue

TTM EBITDA

EBITDA Margin

1

2025-06-30

$422.82B

$34.98B

8.27%

2

2025-03-31

$410.06B

$37.64B

9.18%

3

2024-12-31

$400.28B

$36.39B

9.09%

4

2024-09-30

$393.90B

$36.24B

9.20%

Pre-Tax Margin

Retrieves pre-tax margin data showing the percentage of revenue remaining before taxes. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="AMZN")
result = ticker.macrotrends_pre_tax_margin

Results:

Date

TTM Revenue

TTM Pre-Tax Income

Pre-Tax Margin

1

2025-06-30

$670.04B

$82.92B

12.38%

2

2025-03-31

$650.31B

$77.31B

11.89%

3

2024-12-31

$637.96B

$68.61B

10.76%

4

2024-09-30

$620.13B

$59.95B

9.67%

Net Margin

Retrieves net margin data showing the percentage of revenue remaining as net income after all expenses. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="AMZN")
result = ticker.macrotrends_net_margin

Results:

Date

TTM Revenue

TTM Net Income

Net Margin

1

2025-06-30

$670.04B

$70.62B

10.54%

2

2025-03-31

$650.31B

$65.94B

10.14%

3

2024-12-31

$637.96B

$59.25B

9.29%

4

2024-09-30

$620.13B

$49.87B

8.04%

Revenue

Retrieves company revenue data over time. Pass frequency as “annual” or “quarterly”. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="AMZN")
result = ticker.macrotrends_revenue(frequency="quarterly")

Results:

Amazon Quarterly Revenue (Millions of US $)

Amazon Quarterly Revenue (Millions of US $).1

0

2025-06-30

$167,702

1

2025-03-31

$155,667

2

2024-12-31

$187,792

3

2024-09-30

$158,877

4

2024-06-30

$147,977