Finviz

Data extracted from Finviz includes historical data on different criteria and includes revenue breakdowns by products, services, and regions. Examples are provided below.

Important

In each result dataframe, only the first 5 rows of the DataFrame are shown at most to keep the documentation concise. The actual DataFrame returned by each function may contain more rows.

Insider Trading Data

Retrieves insider trading activity data including transaction details, relationships, and SEC form filings. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="msft")
result = ticker.finviz_get_insider_trading()

Results:

Insider Trading

Relationship

Date

Transaction

Cost

#Shares

Value ($)

#Shares Total

SEC Form 4

0

Nadella Satya

Chief Executive Officer

Sep 03 ‘25

Sale

504.78

149,205

75,315,121

790,852

Sep 04 06:01 PM

1

SATYA NADELLA

Director

Sep 03 ‘25

Proposed Sale

505.12

149,205

75,366,430

Sep 03 04:31 PM

2

Numoto Takeshi

EVP, Chief Marketing Officer

Aug 12 ‘25

Sale

527.32

4,850

2,557,506

39,111

Aug 13 06:03 PM

3

Numoto Takeshi

Officer

Aug 05 ‘25

Proposed Sale

527.75

4,870

2,570,142

Aug 05 04:55 PM

4

Numoto Takeshi

EVP, Chief Marketing Officer

Jun 03 ‘25

Sale

463

3,000

1,389,000

43,930

Jun 04 06:00 PM

Earnings Revisions Data

Retrieves analyst earnings estimate revisions data including revision counts and estimate changes over time. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="msft")
result = ticker.finviz_earnings_revisions_data()

Results:

ticker

fiscalPeriod

estimateType

estimateDate

relativeFiscalPeriod

estimates

upRevisions

downRevisions

mean

high

low

price

0

msft

2023FY

E

2023-07-06T00:00:00

1

43

39

0

9.6209

9.84

9.39

341.27

1

msft

2023FY

E

2023-07-09T00:00:00

1

43

38

0

9.6209

9.84

9.39

337.22

2

msft

2023FY

E

2023-07-10T00:00:00

1

43

5

0

9.6209

9.84

9.39

331.83

3

msft

2023FY

E

2023-07-12T00:00:00

1

43

2

0

9.6196

9.84

9.39

337.2

4

msft

2023FY

E

2023-07-13T00:00:00

1

43

2

0

9.6196

9.84

9.39

342.66

Earnings Annual Data

Retrieves annual earnings data including actual vs. estimated EPS, sales figures, and analyst counts. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="GOOG")
result = ticker.finviz_earnings_annual_data()

results:

ticker

fiscalPeriod

earningsDate

fiscalEndDate

epsActual

epsEstimate

epsReportedActual

epsReportedEstimate

salesActual

salesEstimate

epsAnalysts

epsReportedAnalysts

salesAnalysts

peRatio

peRatioGaap

psRatio

0

GOOG

2010FY

2010-12-31

0.7423

0.7252

0.6584

0.638

22006

21691.3

35

30

38

332.009

374.317

nan

1

GOOG

2011FY

2011-12-31

0.9026

0.9251

0.7447

0.7862

29095

29390.9

37

28

33

273.045

330.939

nan

2

GOOG

2012FY

2012-12-31

0.9817

0.9952

0.8085

0.8143

40419

41472.8

38

28

32

251.044

304.824

nan

3

GOOG

2013FY

2013-12-31

1.111

1.1025

0.9542

0.9457

47575

47592.7

39

28

31

221.827

258.279

nan

4

GOOG

2014FY

2014-12-31

1.2873

1.2892

1.051

1.0052

52511

52749.9

47

34

39

191.447

234.491

nan

Earnings Data

Retrieves quarterly earnings data including actual vs. estimated EPS and sales figures with analyst coverage information. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="UNH")
result = ticker.finviz_earnings_data()

results:

ticker

fiscalPeriod

earningsDate

fiscalEndDate

epsActual

epsEstimate

epsReportedActual

epsReportedEstimate

salesActual

salesEstimate

epsAnalysts

epsReportedAnalysts

salesAnalysts

0

UNH

2025Q2

2025-07-29T08:30:00

2025-06-30

4.08

4.4502

3.74

4.3225

111616

111523

23

14

18

1

UNH

2025Q1

2025-04-17T08:30:00

2025-03-31

7.2

7.2917

6.85

6.9024

109575

111579

23

13

19

2

UNH

2024Q4

2025-01-16T08:30:00

2024-12-31

6.81

6.7379

5.98

6.2509

100807

101595

24

15

18

3

UNH

2024Q3

2024-10-15T08:30:00

2024-09-30

7.15

7.0052

6.51

6.6621

100820

99139.4

24

15

18

4

UNH

2024Q2

2024-07-16T08:30:00

2024-06-30

6.8

6.6483

4.54

6.3021

98855

98785.6

23

13

18

Overall Dividend

Retrieves overall dividend information including ex-date, estimates, and trailing twelve months data. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="UNH")
result = ticker.finviz_overall_dividend()

results:

lastClose

dividendExDate

dividendEstimate

dividendTTM

0

497.85

2025-07-21T00:00:00

5.819

5.74

Dividend Date

Retrieves historical dividend payment dates and amounts including ordinary and special dividends. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="CAT")
result = ticker.finviz_dividends_date_data()

results:

Ticker

Exdate

Ordinary

Special

0

CAT

2025-07-21

1.51

0

1

CAT

2025-04-21

1.41

0

2

CAT

2025-01-21

1.41

0

3

CAT

2024-10-21

1.41

0

4

CAT

2024-07-22

1.41

0

Dividends Annual Data

Retrieves annual dividend data including amounts, yields, payout ratios, and estimate indicators. Returns a DataFrame.

from stockdex import Ticker

ticker = Ticker(ticker="AAPL")
result = ticker.finviz_dividends_annual_data()

results:

Ticker

FiscalPeriod

Amount

Yield

Payout

Estimate

0

AAPL

2015FY

0.49

1.73

21.48

False

1

AAPL

2016FY

0.55

1.93

26.23

False

2

AAPL

2017FY

0.6

1.56

26.06

False

3

AAPL

2018FY

0.68

1.2

22.84

False

4

AAPL

2019FY

0.75

1.37

25.24

False

Revenue by Products and Services

Retrieves revenue breakdown by different products and services over fiscal years. Returns a dictionary where each key is a product or service name, and the value is another dictionary containing two lists: fiscal_year and value.

Note

Only first 2 entries are shown for each product/service for brevity. Full data can be obtained by running the code.

from stockdex import Ticker

ticker = Ticker(ticker="AAPL")
result = ticker.finviz_revenue_by_products_and_services()

Mac

Fiscal Year

Value

2016

22831000000.0

2017

25569000000.0

Manufactured Product, Other

Fiscal Year

Value

2016

11132000000.0

2017

0.0

Service

Fiscal Year

Value

2016

24348000000.0

2017

32700000000.0

Wearables, Home and Accessories

Fiscal Year

Value

2017

12826000000.0

2018

17381000000.0

iPad

Fiscal Year

Value

2016

20628000000.0

2017

18802000000.0

iPhone

Fiscal Year

Value

2016

136700000000.0

2017

139337000000.0

Revenue by Segment

Retrieves revenue breakdown by business segments over fiscal years. Returns a dictionary where each key is a segment name, and the value is another dictionary containing two lists: fiscal_year and value.

from stockdex import Ticker

ticker = Ticker(ticker="AAPL")
result = ticker.finviz_revenue_by_segment()

The output is a dictionary where each key is a segment name, and the value is another dictionary containing two lists: fiscal_year and value. The fiscal_year list contains the fiscal years for which revenue data is available, and the value list contains the corresponding revenue figures.

Note

Only first 2 entries are shown for each segment for brevity. Full data can be obtained by running the code.

Americas

Fiscal Year

Value

2016

86613000000.0

2017

96600000000.0

Europe

Fiscal Year

Value

2016

49952000000.0

2017

54938000000.0

Greater China

Fiscal Year

Value

2016

48492000000.0

2017

44764000000.0

Japan

Fiscal Year

Value

2016

16928000000.0

2017

17733000000.0

Rest of Asia Pacific

Fiscal Year

Value

2016

13654000000.0

2017

15199000000.0

Revenue by Regions

Retrieves revenue breakdown by geographic regions over fiscal years. Returns a dictionary where each key is a region name, and the value is another dictionary containing two lists: fiscal_year and value.

from stockdex import Ticker

ticker = Ticker(ticker="AAPL")
result = ticker.finviz_revenue_by_regions()

Note

Only first 2 entries are shown for each region for brevity. Full data can be obtained by running the code.

The output is a dictionary where each key is a region name, and the value is another dictionary containing two lists: fiscal_year and value. The fiscal_year list contains the fiscal years for which revenue data is available, and the value list contains the corresponding revenue figures.

China

Fiscal Year

Value

2016

48492000000.0

2017

44764000000.0

2018

51942000000.0

Other countries

Fiscal Year

Value

2016

91480000000.0

2017

100131000000.0

United States

Fiscal Year

Value

2016

75667000000.0

2017

84339000000.0

Price Reaction to Earnings Report

… code-block:: python

from stockdex import Ticker

ticker = Ticker(ticker=”PLTR”) result = ticker.finviz_price_reaction_to_earnings_report()

Note

The output is a dictionary.